Hidden EGFR Threats and Role of Amivantamab

Exon20ins Mutations

NSCLC: Not One Disease, but Many!

- Activating mutations occur in cancer cell genes that encode proteins critical to cell growth and survival
- Malignant cells with activating mutations are uniquely susceptible to targeted therapy

EGFR mutations are among the most prevalent actionable driver mutations in NSCLC

Figure adapted from Heydt C, et al. Oncotarget. 2018;9:15418-15434.

EGFR, epidermal growth factor receptor; Ex19del, exon 19 deletion mutation; Ex20ins, exon 20 insertion mutation; NSCLC, non-small cell lung cancer.

1. Heydt C, et al. Oncotarget. 2018;9(20):15418-15434. 2. Herbst RS, et al. *Nature*. 2018;553(7689):446-454. 3. Sequist LV, Neal JW. Personalized, genotype-directed therapy for advanced non-small cell lung cancer. 2019. https://www.uptodate.com/contents/personalized-genotype-directed-therapy-for-advanced-non-small-cell-lung-cancer. Accessed July 23, 2021.

Most Common EGFR Mutations in NSCLC¹

- Oncogenic mutations of EGFR are found within **exons 18 to 21**
 - Encode part of the tyrosine-kinase domain around the ATP-binding pocket of the enzyme²
- Exon 19 and 21 mutations are often referred to as common EGFR activating mutations³

Graph modified from Reiss et al.1

ATP, adenosine triphosphate; EGFR, epidermal growth factor receptor; ex19del, exon 19 deletion; ex20ins, exon 20 insertion mutation; NSCLC, non-small cell lung cancer.

1. Reiss JW, et al. J Thorac Oncol. 2018;13(10):1560-1568. 2. Calvayrac O, et al. Eur Respir J. 2017;49(4):1601734. 3. Vyse S and Huang PH. Signal Transduct Target Ther. 2019;4:5. 4. Villabos P, et al. Hematol Oncol Clin North Am. 2017;31(1):13-29.

EGFR Mutation Location Determine Sensitivity to TKI Therapy

Unlike mutations in EGFR exons 18, 19, and 21, exon 20 mutations are typically resistant to EGFR TKI therapy (A763_Y764insFQEA is an exception)¹

L858R and ex19del mutations cause conformational changes that confer sensitivity to EGFR TKIs¹

In contrast, ex20ins mutations cause conformational changes that **reduce TKI binding**¹⁻³

For example, insertions after site 764 (like the NPG insertion) may form a wedge at the end of the helical region that locks it in the **active state**^{2,3}

Low response rates of **3-8%** have been reported in patients with EGFR ex20ins mutations treated with erlotinib, gefitinib, and afatinib¹

Inframe insertions in exon 20 of the EGFR gene were among the first EGFR mutations to be identified as oncogenic drivers in NSCLC and account for upto 12% of EGFR-mutated NSCLC

EGFR, epidermal growth factor receptor; NSCLC, non-small cell lung cancer. 1. Vyse S, Huang PH. Signal Transduct Target Ther. 2019;4:5; 2. Reiss JW, et al. J Thorac Oncol. 2018;13:1560–1568; 3. Burnett H, et al. PLoS One. 2021;16:e0247620; abstract P09.61; 4. Calvavrac O. et al. Eur Respir J. 2017;49; 5. Villalobos P. et al. Hematol Oncol Clin North Am. 2017;31:13–29.

	Europe ¹ 0.3-1.3% of all NSCLC (13 studies)	Asia Pa 0.1-4.0% of a 1-5% of EGFR	cific¹ all NSCLC (28 st m [†] NSCLC (16 stu	udies) Jdies)
5-2.6% of all NSCIC (9 studios*)	4–12% of EGFRM ⁺ NSCLC (10 studies)		All	EGFRm [†]
5.3-2.0% of an NSCLC (9 studies)		1 () () () () () () () () () (NSCLC	NSCLC
-12% of LG/ KIII (NSCLC (7 studies)		China	0.3–2.9% (9 studies)	2–5% (7 studies)
		Japan	1.8–2.4% (4 studies)	2–5% (2 studies)
		Taiwan	1.3–4.0% (3 studies)	3–4% (2 studies)
Latin America		South Asia	0.3–3.4% (5 studies)	1–4% (4 studies)
1.3–2.1% of all NSCLC 5–8% of <i>EGFR</i> m ⁺ NSCLC (5 s	(7 studies) studies)	Southeast Asia	0.1–2.4% (4 studies)	2–3% (2 studies)

The real-world frequency of exon20ins mutations varies¹ and may be underestimated due to the limitations of current testing methods used^{1,2}

Most studies reporting frequency of mutation are based on single-centre studies, which impacts the validity of findings.

*Excludes Arcila et al. 2013 that primarily examined targeted NSCLC tumours known to be negative for major EGFR mutations. (Exon 19 deletion, L858R) and KRAS and may therefore overestimate the frequency of exon20ins; †Includes all EGFR mutations. EGFR, epidermal growth factor receptor; NSCLC, non-small-cell lung cancer.

1. Burnett H, et al. PLoS One. 2021;16:e0247620; 2. Bauml JM, et al. Featured poster presentation at WCLC 2020; abstract FP07.12.

EGFR exon20ins location^{1,2}

Helical region				Near loop				Far loop						
761	762	763	764	765	766	767	768	769	770	771	772	773	774	775
D	E	A	Y	V	М	A	S	V	D	N	Ρ	Н	V	С

Exon20ins are either inframe insertions or duplications¹

Most insertions comprise 3–21 nucleotide base pairs (1–7 amino acids)¹

The location of these insertions can influence drug- and ATP- binding kinetics¹

Most insertions typically occur between amino acids 761 to 775 and can be divided in according to the protein structure they form: helical, near loop, and far loop^{1,2}

There are a broad number of EGFR exon20ins variants;^{1,2} to date, over 100 unique variants of EGFR exon20ins mutations have been identified.¹ A retrospective study suggested that p.A767_V769dup and p.S768_D770dup were the most prevalent exon20ins variants²

EGFR exon20ins are unique and distinct from common EGFR mutations. Compared with common mutations, exon20ins induce unique conformational changes in EGFR and reduce the size of the drug binding pocket and affinity for TKIs^{1–3}

EGFR TKIs have transformed the treatment landscape for EGFR-mutated NSCLC. However, exon20ins are generally insensitive to EGFR TKI treatment¹

*EGFR TKIs included gefitinib, erlotinib, icotinib, afatinib, osimertinib, neratinib and dacomitinib.

EGFR, epidermal growth factor receptor; NSCLC, non-small cell lung cancer; ORR, objective response rate; TKI, tyrosine kinase inhibitor.

1. Vyse S, Huang PH. Signal Transduct Target Ther. 2019;4:5; 2. Harrison PT, et al. Semin Cancer Biol. 2020;61:167–179; 3. Beau-Faller M, et al. Ann Oncol. 2014:25:126–131;

4. Naidoo J, et al. Cancer. 2015;121:3212–3220; 5. Xu J, et al. Lung Cancer. 2016;96:87–92; 6. Kate S, et al. Lung Cancer. 2019;10:1–10; 7. Janne PA, et al. Clin Cancer Res. 2011;17:1131–1139; 8. Yang JCH, et al. Lancet Oncol. 2015;16:830–838; 9. Sequist LV, et al. J Clin Oncol. 2010;28:3076–3083.

Summary of prognostic impact of exon20ins compared with other genotypes

	Outcomes with EGFR TKIs ¹				
	Median OS (months)	Median PFS (months)	ORR (%)		
4.8–19 6 studies 177 patients (11–67)Classic EGFRm (19del or L858R)19.6–27.7 3 studies 501 patients (37–278)		1.4–3.0 8 studies 183 patients (11–67)	0–20% 7 studies 194 patients (11–67)		
		8.5–15.2 3 studies 501 patients (37–278)	27.4–84% 5 studies 1,193 patients (37–692)		

A systematic literature review of 78 studies found that currently available EGFR TKIs were generally ineffective against EGFR exon20ins (ORR of 0–20%; mPFS of 1.4–3.0 months with erlotinib/gefitinib/osimertinib treatment)

Platinum-based therapies are the most common first-line treatment for patients with EGFR exon20ins.^{1,2} However, responses are still not durable (mOS: 17.4–18.2 months^{1–4}; mPFS: 5.3–6.6 months)^{2,4}

CI, confidence interval; IO, immuno-oncology; mOS, median overall survival; mPFS, median progression-free survival; rwOS, real-world overall survival; rwPFS, real-world progression-free survival; TKI, tyrosine kinase inhibitor; VEGFi, vascular endothelial growth factor inhibitor. 1. Dersarkissian M, et al. Poster presentation at IASLC 2019; abstract P2.01-103; 2. Girard N, et al. Oral presentation at WCLC 2020; abstract MA04.07; 3. Choudhury NJ, et al. *Clin Cancer Res.* 2021;ePub ahead of print; 4. Burnett H, et al. *PLoS One.* 2021;16:e0247620.

There is no standard of care for second line treatment, with IO and chemotherapy, having limited efficacy both alone, and in combination^{1–3}

CI, confidence interval; IO, immuno-oncology; rwOS, real-world overall survival; rwPFS, real-world progression-free survival; TKI, tyrosine kinase inhibitor.

1. Choudhury NJ, et al. Clin Cancer Res. 2021;ePub ahead of print; 2. Dersarkissian M, et al. Poster presentation at IASLC 2019; abstract P2.01-103;

3. Fang W, et al. BMC Cancer. 2019;19:595; 4. Girard N, et al. Oral presentation at WCLC 2020; abstract MA04.07;

RWE Analysis: Results

A study of 3,014 patients with advanced EGFR-mutated NSCLC investigated the prognostic value of EGFR exon20ins compared with common EGFR mutations (exon 19 deletions or L858R mutations)

*Flatiron database, 181 patients with advanced NSCLC with exon 20 insertions from 2011–2020.

Cl, confidence interval; EGFR, epidermal growth factor receptor; HR, hazard ratio; NSCLC, non-small cell lung cancer; rwOS, real-world overall survival. Girard N, et al. Oral presentation at WCLC 2020; abstract MA04.07.

RWE Analysis: Results

A study of 2,825 patients investigated the predictive value of exon20ins for EGFR TKI treatment. Exon20ins were associated with less benefit from EGFR TKIs compared with common EGFR mutations

'Flatiron database, 181 patients with advanced NSCLC with exon 20 insertions from 2011–2020. CI, confidence interval; EGFR, epidermal growth factor receptor; HR, hazard ratio; NSCLC, non-small cell lung cancer; rwOS, real-world overall survival; TKI, tyrosine kinase inhibitor. Girard N, et al. Oral presentation at WCLC 2020; abstract MA04.07.

RWE Analysis: Results

The estimated 5-year survival rate for patients with EGFR exon20ins was 8% compared with 19% for common EGFR mutations

Summary

Patients with EGFR ex20ins have poorer prognosis compared with patients with cEGFR

- 75% increased risk of death
- 93% increased risk of progression or death
- 5-year overall survival of 8%

Patients with ex20ins derived less benefit from TKIs compared with patients with cEGFR

- **170%** increased risk of death
- 169% increased risk of progression or death

Platinum-based therapies were the most common first-line treatment for ex20ins NSCLC, with no clear SOC in second-line

The poor outcomes associated with ex20ins NSCLC illustrate the **need** for new effective therapies

cEGFR, common EGFR mutations; EGFR, epidermal growth factor receptor; ex20ins, exon 20 insertion mutation; NSCLC, non-small cell lung cancer; SOC, standard of care; TKIs, tyrosine kinase inhibitors. Girard N, et al. Presented at the International Association for the Study of Lung Cancer 2020 World Conference on Lung Cancer. 28-31 January 2021; Virtual. Abstract 3390.

Exon20ins: Indian Scenario

- Only 2 retrospective studies reported the efficacy of currently available treatment regimes in patients with Exon20ins mutations
- Kate S et al in their retrospective study reported that patients with Ex20ins had a mPFS of 6 months (95% CI, 2.4–9.6), and mOS of 15.8 months (95% CI, 6.2–25.3)
- In the same study mPFS with oral TKIs was 1.9 months (95% CI, 0.3–3.5)
- Noronha V et al reported dismal mOS of only 5 months (95% CI, 0.17–9.8) in patients with EGFR Ex20ins

The prognosis of patients with Exon20ins mutation remains poor

1. Lung Cancer. 2011 Sep;73(3):316-9.; 2. Indian J Cancer 2013;50:87-93.; 3. Onco Targets Ther. 2017 Jun 9;10:2903-2908.; 4. Lung Cancer (Auckl). 2019 Jan 29;10:1-10.; 5. Lung Cancer. 2020 Nov;149:53-60.; 6. Journal of Thoracic Oncology Vol. 16 No. 8: 1250-1266.

Exon20ins: Indian Scenario

Author Name	Year	Exon20ins % in EGFR+ domain
Sahoo R et al ¹	2011	9/220 (4.0%)
Veldore VH et al ²	2013	17/418 (4.06%)
Chougule A et al ³	2013	7/215 (3.25%)
Noronha V et al ⁴	2017	20/227 (8.8%)
Kate S et al ⁵	2019	15/227 (6.6%)
Singh S et al ⁶	2020	4/391 (1.02%)
Singh N et al ⁷	2021	16/298 (5.4%)

The reported prevalence of Exon20ins mutations in India is in the range of $\sim 1 - 8\%$

20 1. Lung Cancer. 2011 Sep;73(3):316-9.; 2. Indian J Cancer 2013;50:87-93.; 3. PLoS One. 2013 Oct 4;8(10):e76164.; 4 Onco Targets Ther. 2017 Jun 9;10:2903-2908.; 5. Lung Cancer (Auckl). 2019 Jan 29;10:1-10.; 6. Lung Cancer. 2020 Nov;149:53-60.; 7. Journal of Thoracic Oncology Vol. 16 No. 8: 1250-1266. <u>Onco Targets Ther.</u> 2017; 10: 2903–2908. Published online 2017 Jun 9. doi: <u>10.2147/OTT.S133245</u> PMCID: PMC5476719 PMID: <u>28652772</u>

Epidermal growth factor receptor exon 20 mutation in lung cancer: types, incidence, clinical features and impact on treatment

Vanita Noronha,^{1,*} Anuradha Choughule,^{2,*} Vijay M Patil,^{1,*} Amit Joshi,¹ Rajiv Kumar,³ Deepa Susan Joy Philip,¹ Shripad Banavali,² Amit Dutt,⁴ and Kumar Prabhash²

Author information > Copyright and License information Disclaimer

Abstract

Go to: 🕨

Table 1

Demographic and clinical profiles of the three patient cohorts

Variables	EGFR TKI-sensitizing activating mutations (n=227)	Exon 20 (n=20)	EGFR and ALK mutation negative (n=333)
Median age, years	56 (IQR 50-63)	59 (IQR 47.8-65)	56 (IQR 49-62)
Gender distribution, n (%)	Male: 141 (62.1)	Male: 12 (60.0)	Male: 222 (66.7)
	Female: 86 (37.9)	Female: 8 (40.0)	Female: 111 (33.3)
Nonsmokers, n (%)	168 (74.0)	13 (65.5)	168 (52.0)
PS, n (%)	0-1: 110 (48.5)	0-1: 12 (60.0)	0-1:260 (78.5)
	2 or >2: 117 (51.5)	2 or >2: 8 (40.0)	2 or >2: 73 (21.9)
Extrathoracic metastasis, n (%)	105 (46.3)	11 (55.0)	106 (31.8)
Brain metastasis, n (%)	29 (12.8)	06 (30.0)	10 (3.0)
Bone metastasis, n (%)	59 (26.0)	05 (25.0)	84 (25.2)
Liver metastasis, n (%)	39 (17.2)	02 (10.0)	29 (08.7)
Multiple organ metastases, n (%)	19 (8.3)	02 (10.0)	17 (5.1)

Abbreviations: EGFR, epidermal growth factor receptor; TKI, tyrosine kinase inhibitor; ALK, anaplastic lymphoma kinase; IQR, interquartile range; PS, performance status.

PCR-based tests only detect a limited number of *EGFR* exon 20 insertion mutations¹⁻³

- While PCR-based tests are mutation-specific, NGS tests can detect a broad range of EGFR exon 20 insertion mutations¹⁻³
 - In one study, comprehensive genomic profiling across 263 patients revealed 64 unique exon 20 insertion mutations¹

Because targeted PCR-based approaches for detection of EGFR variants may underdetect *EGFR* exon 20 insertion mutations, the NCCN recommends NGS-based strategies⁹

*Commercially available qPCR methods, including Roche cobas® EGFR mutation test v2 and Qiagen therascreen EGFR RGQ PCR kit.4,5

NGS, next-generation sequencing; PCR, polymerase chain reaction; qPCR, quantitative PCR; RGQ, Rotor-Gene Q.

1. Riess JW. *J Thorac Oncol.* 2018;13:1560-1568. 2. Oxnard GR. *J Thorac Oncol.* 2013;8:179-184. 3. Bauml J. Presented at: the IASLC 2020 World Conference on Lung Cancer; January 28-31, 2021; Singapore. 4. cobas® EGFR Mutation Test v2. Roche. Accessed September 27, 2021. https://pim-eservices.roche.com/LifeScience/Document/6be3ed31-f399-ea11-fc90-005056a71a5d 5. therascreen EGFR RGQ PCR Kit Handbook. QIAGEN. Accessed September 27, 2021. https://www.qiagen.com/sg/resources/download.aspx?id=db4d279d-ef20-4441-8c86-e765d23c3bba&lang=en 6. Arcila ME. *Mol Cancer Ther.* 2013;12(2):220-229. 7. Wang F. *Transl Cancer Res.* 2020;9(4):2982-2991. 8. Yasuda H. *Lancet Oncol.* 2012;13(1):e23-e31. 9. Referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) for Non-Small Cell Lung Cancer V.1.2022. © National Comprehensive Cancer Network, Inc. 2021. All rights reserved. Accessed December 7, 2021. To view the most recent and complete version of the guideline, go online to NCCN.org. NCCN makes no warranties of any kind whatsoever regarding their content, use or application and disclaims any responsibility for their application or use in any way.

Role of Amivantamab

Amivantamab: A fully human, EGFR-MET bispecific antibody

- Amivantamab binds extracellularly, so it is not affected by co-mutations in the EGFR TKI binding pocket
- By targeting activating and resistance EGFR mutations and MET mutations and amplifications, amivantamab addresses 2 major mechanisms of resistance to SOC
- Amivantamab binds EGFR and MET with high affinity

Amivantamab has demonstrated three MoAs^{1–3}

EGFR, epidermal growth factor receptor; MET, tyrosine-protein kinase MET; MoA, mechanism of action; NSCLC, non-small cell lung cancer. 1. Moores SL, et al. Cancer Res. 2016;76:3942–3953; 2. Haura

MoA: Immune cell-directed activity

Immune cell-directing activity: ADCC^{1,2,4}

Ab, antibody; ADCC, antibody-dependent cellular cytotoxicity; ADCT, antibody-dependent cellular trogocytosis; EGFR, epidermal growth factor receptor; Fc, fragment crystallisable; IgG1, immunoglobulin G1; NK, natural killer; NSCLC, non-small cell lung cancer.

1. Moores SL, et al. Cancer Res. 2016;76:3942–3953; 2. Haura EB, et al. Oral presentation at ASCO 2019 Congress, Chicago, USA; abstract 9009;

3. Grugan KD, et al. MAbs. 2017;9:114–126; 4. Vijayaraghavan S, et al. Mol Cancer Ther. 2020;19:2044–2056;

5. Velmurugan R, et al. Mol Cancer Ther. 2016;15:1879–1889; 6. Hoves S, et al. Oncolmmunology. 2012;1:219-221.

MoA: EGFR and MET receptor degradation

EGFR, epidermal growth factor receptor; MoA, mechanism of action.

1. Moores SL, et al. *Cancer Res.* 2016;76:3942–3953; 2. Haura EB, et al. Oral presentation at ASCO 2019 Congress, Chicago, USA; abstract 9009; 3. Vijayaraghavan S, et al. *Mol Cancer Ther.* 2020;19:2044–2056.

MoA: Inhibition of ligand binding

Inhibition of ligand-binding¹⁻³

3

EGF, epidermal growth factor; EGFR, epidermal growth factor receptor; HGF, hepatocyte growth factor; MoA, mechanism of action. 1. Moores SL, et al. *Cancer Res.* 2016;76:3942–3953; 2. Haura EB, et al. Oral presentation at ASCO 2019 Congress, Chicago, USA; abstract 9009; 3. Vijayaraghavan S, et al. *Mol Cancer Ther.* 2020;19:2044–2056.

Dosing and Administration

- <u>Amivantamab is administered</u> <u>intravenously once weekly for 4</u> <u>weeks, then every 2 weeks</u> <u>thereafter</u>
- Due to IRR frequency at first dose, infusion via a peripheral vein at week 1 through week 2 should be considered to minimize drug exposure in case of an IRR
- Infusion via central line may be administered for subsequent weeks
- First dose should be diluted as close to administration as possible to allow for maximal flexibility in IRR management

RECOMMENDED AMIVANTAMAB DOSE FOR ADULTS (≥18 YEARS)						
Body Weight (at Baseline)	Recommended Dose	Number of 350 mg/ 7-mL Amivantamab Vials				
<80 kg	1050 mg	3				
≥80 kg	1400 mg	4				

Infusion Rates for Amivantamab Administration

1050-mg Dose						
Week	Dose (per 250-mL bag)	Initial infusion rate	Subsequent infusion rate [†]			
Week 1 (split dose infusion)						
Week 1 day 1	350 mg	50 mL/hr	75 mL/hr			
Week 1 day 2	700 mg	50 mL/hr	75 mL/hr			
Week 2	1050 mg	85 mL/hr				
Subsequent weeks*	1050 mg	125 mL/hr				
	1400-mg E	lose				
Week	Dose (per 250-mL bag)	Initial infusion rate	Subsequent infusion rate [†]			
Week 1 (split dose infusion)						
Week 1 day 1	350 mg	50 mL/hr	75 mL/hr			
Week 1 day 2	1050 mg	35 mL/hr 50 mL/hr				
Week 2	1400 mg	65 mL/hr				
Week 3	1400 mg	85	mL/hr			
		125 mL/hr 31				

*After week 4, patients are dosed every 2 weeks.

[†]Increase the initial infusion rate to the subsequent infusion rate after 2 hours in the absence of IRRs.

IRR, infusion-related reaction.

Amivantamab. Package insert. Janssen Biotech, Inc; 2021.

Amivantamab: Clinical Efficacy &

CHRYSALIS: Phase 1 Study of Amivantamab in EGFRm NSCLC

Key Objectives

- Part 1: Establish RP2D
- Part 2: Safety and efficacy at RP2D

Key Eligibility Criteria

- Metastatic/unresectable NSCLC
- Failed/ineligible for SOC therapy
- Advanced NSCLC (part 1)
- Measurable disease (part 2)
- Activating/resistance EGFR or MET mutations/amplifications (part 2)

Part 2: Dose Expansion

Cohort A: EGFR-dependent resistance

Cohort B: EGFR-independent resistance

Cohort C: Post-EGFR-3GTKI, C797S+

> Cohort D: EGFR ex20ins

Cohort E: Amivantamab + lazertinib combination; 1L or post-EGFR-3GTKI

Cohort MET-1: *MET* amplification, post-EGFR TKI

Cohort MET-2: *MET* amplification, exon14 skipping

Amivantamab + Chemotherapy

Eligible for platinum-based chemotherapy

*Split first dose.

1L, first-line; 3GTKI, third-generation tyrosine kinase inhibitor; amp, amplification; C, cycle; D, day; EGFR, epidermal growth factor receptor; EGFRm, EGFR-mutated; ex20ins, exon 20 insertion mutation; MRI, magnetic resonance imaging; NSCLC, non-small cell lung cancer; PK, pharmacokinetics; RP2D, recommended phase 2 dose; SOC, standard of care.

1. Park K, et al. J Clin Oncol. 2021. doi: 10.1200/JCO.21.00662. 2. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT02609776. Accessed 18 January 2021.

Cohort D: Study Design

Patients with EGFR-mutated advanced NSCLC²

Key inclusion criteria for post-platinum population:

- Metastatic/unresectable NSCLC
- EGFR exon20ins mutation
- Progressed on platinum-based chemotherapy

Key objectives:²

- Dose escalation: establish RP2D
- Dose expansion: assess safety and efficacy at RP2D

Primary efficacy endpoint: ORR per RECIST v1.1² **Key secondary:** CBR, DoR, PFS, OS²

C1, Cycle 1; CBR, clinical benefit rate; DoR, duration of response; EGFR, epidermal growth factor receptor; NSCLC, non-small cell lung cancer; ORR, objective response rate; OS, overall survival, PFS, progression-free survival; QW, weekly; RP2D, recommended Phase 2 dose; RECIST, response evaluation criteria in solid tumours.

*Post-platinum patients treated at the RP2D and had ≥3 scheduled disease assessments or discontinued, progressed, or died prior to the third postbaseline assessment at the time of clinical cut-off (June 8, 2020). By October 8, 2020, all responders in the efficacy population had ≥6 months of follow-up from their first disease assessment.

1. Park K, et al. J Clin Oncol. doi:10.1200/JCO.21.00662 [published online ahead of print August 02, 2021]; 2. Sabari JK, et al. Oral presentation at WCLC 2020 Congress, Virtual meeting; abstract OA04.04.

Demographics and baseline characteristics

All patients had received prior platinum-based chemotherapy

	Efficacy population (n=81)
Age, years, median (range)	62 (42-84)
Female, n (%)	48 (59)
Race, n (%) Asian Black White Not reported/multiple	40 (49) 30 (37) 2 (2) 9 (11)
Smoking history, n (%) Non-smoker Smoker	43 (53) 38 (47)
Time from initial diagnosis, median months, (range)	17 (1–130)
History of brain metastases, n (%)	18 (22)
Number of prior therapy lines, median (range)	2 (1-7)

	Efficacy population (n=81)
Prior systemic therapies, n (%)	81 (100)
Platinum-based chemotherapy	81 (100)
Immuno-oncology therapy	37 (46)
EGFR TKI	20 (25)
First-generation TKI*	7 (9)
Second-generation TKI ⁺	6 (7)
Third-generation TKI [‡]	6 (7)
Poziotinib	1 (1)

*Erlotinib and gefitinib; *Afatinib; *Osimertinib, ASP8273 and nintedanib.

EGFR, epidermal growth factor receptor; TKI, tyrosine kinase inhibitor.

Sabari JK, et al. Oral presentation at WCLC 2020 Congress, Virtual meeting; abstract OA04.04; Park K, et al. J Clin Oncol. doi:10.1200/JCO.21.00662 [published online ahead of print August 02, 2021].

Amivantamab: Safety Profile

AEs were consistent with EGFR

and MET inhibition				Safety population (N=114)				
			AEs ≥15%, n (%)¹	TEAE		TF	TRAE	
				Total	Grade ≥3	TEAE	Grade ≥3	
	Safety population (N=114) ¹		EGFR-related					
AEs, n (%)			Rash*	98 (86)	4 (4)	98 (86)	4 (4)	
	TEAE	TRAE	Paronychia	51 (45)	1 (1)	48 (42)	1(1)	
Any AE	113 (99)	112 (98)	Stomatitis	24 (21)	0	21 (18)	0	
Grade ≥3 AE	40 (35)	18 (16)	Pruritus	19 (17)	0	19 (17)	0	
Serious AE	34 (30)	10 (9)	MET-related		- (-)		- (-)	
AEs leading to death	8 (7)	0	Hypoalbuminemia	31 (27)	3 (3)	17 (15)	2 (2)	
AEs leading to discontinuation	11 (10)	5 (4)	Peripheral oedema	21 (18)	0	11 (10)	0	
AEs leading to dose reduction	15 (13)	15 (13)	Other					
	13 (13)	15 (15)	Infusion related reaction	75 (66)	3 (3)	75 (66)	3 (3)	
AEs leading to dose interruption*	40 (35)	24 (21)	Constipation	27 (24)	0	7 (6)	0	
			Nausea	22 (19)	0	13 (11)	0	
			Dyspnoea	22 (19)	2 (2)	6 (5)	0	

*Excludes infusion-related reactions². AE, adverse event; EGFR, epidermal growth factor receptor; TEAE, treatment-emergent adverse event; TRAE, treatment-related adverse event.

1. Sabari JK, et al. Oral presentation at WCLC 2020 Congress, Virtual meeting; abstract OA04.04; 2. Park K, et al. J Clin Oncol. doi:10.1200/JCO.21.00662 [published online ahead of print August 02, 2021]

Fatigue

Increased ALT

21 (18)

17 (15)

2 (2)

1(1)

1(1)

1(1)

14 (12)

14 (12)

Safety summary

There were few treatment-related dose reductions and discontinuations

- **Treatment-related grade ≥3 AEs** were reported in 18 patients (16%)
 - Most common: rash in four patients (4%) and IRR and neutropenia in three patients (3%) each
- **Treatment-related serious AEs** were reported in ten patients (9%)
 - IRR and diarrhoea (2 patients each; 2%) and single reports each of cellulitis, infected dermal cyst, interstitial lung disease, pneumonitis, atrial flutter, rash, and toxic epidermal necrolysis
- Treatment-related dose reductions occurred in 15 patients (13%)
 - Rash (11 patients [10%]) was most frequently reported
- Treatment-related discontinuation occurred in five patients (4%)
 - Rash and IRR in two patients (1.8%) each and paronychia in one patient (1%)

AE, adverse event; IRR, infusion-related reaction.

Park K, et al. J Clin Oncol. doi:10.1200/JCO.21.00662 [published online ahead of print August 02, 2021].

Efficacy by BICR

Median follow-up: 9.7 months (range: 1.1-29.3)

BICR-assessed response	Efficacy population (n=81)
ORR, % (95% CI)	40 (29–51)
DoR, median months (95% CI)	11.1 (6.9–NR)
Best response, n (%) CR PR SD PD NE	3 (4) 29 (36) 39 (48) 8 (10) 2 (2)
CBR*, % (95% CI)	74 (63–83)

Parameter	ORR (%)	No./Total No	. ORR, % (95% CI)
Overall	⊢ ∳-1	32/81	40 (29 to 51)
Age, years			
< 65	⊢ ●	21/48	44 (30 to 59)
≥ 65	⊢_●┼─1	11/33	33 (18 to 52)
Sex			
Male	⊢ ↓●1	15/33	46 (28 to 64)
Female	⊢−∔	17/48	35 (22 to 51)
Race ^b			
Asian	⊢_⊨ 1	17/40	43 (27 to 59)
Non-Asian	⊢ − +	14/32	44 (26 to 62)
Baseline ECOG PS			
0	⊢↓ ■ − 1	14/26	54 (33 to 73)
≥ 1	⊢●┼┥	18/55	33 (21 to 47)
Previous lines of therapy			
1	⊢●┼┥	10/31	32 (17 to 51)
2		7/24	29 (13 to 51)
≥ 3	⊢ 1	15/26	58 (37 to 77)
History of smoking			
Yes	⊢ ⊸ <mark>├</mark> ─┤	13/38	34 (20 to 51)
No	++	19/43	44 (29 to 60)
History of brain metastases			
Yes	⊢	7/18	39 (17 to 64)
No	+++	25/63	40 (28 to 53)
Previous immunotherapy			
Yes	⊢ ∔●∔	17/37	46 (30 to 63)
No	⊢ ● <mark> </mark> −	15/44	34 (21 to 50)
Previous EGFR TKI			
Yes	⊢∔●──1	10/20	50 (27 to 73)
No	⊢ ∎–1	22/61	36 (24 to 49)
	0 20 40 60 80 10	bo	
	i na seconda de la companya de la co		

*CBR: CR, PR, SD for at least two disease assessments; Does not include nine patients with race not reported and multiple race.

BICR, blinded independent central review; CBR, clinical benefit rate; CI, confidence interval; CR, complete response; DoR, duration of re Performance Score; EGFR, epidermal growth factor receptor; NE, not evaluable; NR, not reached; ORR, objective response rate; PD, progressive disease; PR, partial response; SD, stable disease; TKI, tyrosine kinase inhibitor.

Park K, et al. J Clin Oncol. doi:10.1200/JCO.21.00662 [published online ahead of print August 02, 2021].

Amivantamab: Responses over time

- 15 of 32 (47%) patients remain on treatment at time of data cutoff²
- 20 of 32 (63%) patients had responses of ≥6 months²
- mPFS: 8.3 mo (95% Cl, 6.5-10.9)¹
- mOS: 22.8 mo (95% Cl, 14.6-NR)¹

CR, complete response; NE, not evaluable; NR, not reached; PD, progressive disease; PR, partial response; SD, stable disease; SoD, sum of diameters; UNK, unknown. 1. Park K, et al. *J Clin Oncol.* doi:10.1200/JCO.21.00662 [published online ahead of print August 02, 2021]; 2. Sabari JK, et al. Oral presentation at WCLC 2020 Congress, Virtual meeting; abstract OA04.04.

Efficacy across the EGFR exon20ins

Antitumor responses were observed across the EGFR exon20ins, in patients who harboured insertions within the helical, near-loop, and far-loop regions of exon 20¹

Tumour reduction and responses in the efficacy population (n=80)¹

1. Park K, et al. J Clin Oncol. 2021;39(30):3391–3402; 2. RYBREVANT® (amivantamab). Summary of Product Characteristics. 2022.

Summary of CHRYSALIS study

- Amivantamab had a tolerable safety profile consistent with EGFR and MET inhibition^{1,2}
 - TRAEs were primarily grade 1-2 (16% were grade ≥3)
 - Treatment-related discontinuations were low (4%)
- Amivantamab showed robust efficacy with an ORR of 40%^{1,2} and mDoR of 11.1 months¹
 - CBR: 74%; mPFS: 8.3 months; mOS: 22.8 months¹
 - Antitumour activity was observed in all patient subgroups and across exon 20 insertion regions^{1,2}
- Amivantamab is the first bispecific antibody to demonstrate clinically meaningful efficacy in patients with EGFR exon20ins NSCLC¹
- Amivantamab could target other EGFR and/or MET-driven tumours, as monotherapy or in combination, given its favourable safety profile^{3–5}

CHRYSALIS vs Real World Datasets Analysis

- A protocol-driven, external treatment comparison was conducted comparing CHRYSALIS to three real-world US datasets (ConcertAI, COTA, and Flatiron)
- Primary objective: to evaluate the effectiveness of amivantamab vs physician's choice of anticancer treatment in patients with:¹
 - Confirmed advanced NSCLC
 - Tumours with EGFR exon20ins
 - Prior platinum-doublet chemotherapy

Real-world databases ¹	Inclusion criteria ²	Endpoints ¹
ConcertAl	 Advanced metastatic/unresectable NSCLC ≥18 years ECOG ≤1 or missing No maliananey in the past three years 	• OS • PFS • ORR
flatiron .	 No maignancy in the past three years Platinum chemotherapy after metastatic diagnosis or in the 12 months before metastatic diagnosis 	• TTNT

ECOG PS, Eastern Cooperative Oncology Group Performance Status; EGFR,

Demographics and baseline characteristics

	CHRYSALIS (n=81) 81 LOT	Pooled RWD [*] (n=125) 227 LOT
Age, years, median (range)	62 (42-84)	62 (31-84)
Female, n (%)	48 (59)	137 (60)
Race, n (%) Asian Black or African American White Other	40 (56) 2 (3) 30 (42) 0 (0)	27 (13) 11 (5.3) 140 (67) 30 (14)
Smoking history, n (%) Non-smoker Smoker	43 (53) 38 (47)	133 (59) 93 (41)
ECOG PS, n (%) 0 1 2	26 (32) 54 (67) 1 (1)	69 (30) 158 (70) 0 (0)
Brain metastasis at baseline, n (%) No Yes	63 (78) 18 (22)	137 (60) 90 (40)
Prior lines in metastatic setting, [†] n (%) 0 or 1 2 3+	29 (36) 23 (28) 29 (36)	100 (44) 63 (28) 64 (28)
Time from advanced diagnosis to line of therapy, median months (range)	14 (1-116)	15 (0-86)

	Pooled
Unique patients, n*	125
Lines of therapy	227
Median number of therapy lines per patient	1
Real-world treatments, n (%)	
Non-platinum chemo [†]	57 (25)
IO‡	55 (24)
Platinum-containing regimen§	37 (16)
TKI	37 (16)
Others#	21 (9)
VEGFi alone	20 (9)

^{*}De-duplication applied only for pooled data, which excludes patient lines with missing ECOG⁴³ PS: [†]Prior I OT in metastatic setting does not include neo-adjuvant/adjuvant

Efficacy: ORR and PFS

Higher ORR and lower risk of progression in CHRYSALIS vs RWD

+ RWD POOLED (n=125) + CHRYSALIS (n=81)

Confirmed ORR

PFS

Efficacy: TTNT and OS

Longer time to next treatment and overall survival in CHRYSALIS vs RWD

CI, confidence interval; OS, overall survival; RWD, real-world datasets; TTNT, time to next treatment. Minchom A, et al. Poster presented at ASCO 2021; abstract 9052.

Summary of CHRYSALIS vs RWD analysis

 Most commonly used real-world treatments for post-platinum EGFR exon20ins NSCLC included non-platinum-based chemotherapy, immuno-oncology therapies, platinum-containing therapies, and EGFR TKIs

 OS was ~10 months longer in patients treated with amivantamab vs real-world treatments, with corresponding improvements in other outcomes such as ORR, PFS and TTNT

• Poor performance of the external controls showed the relative ineffectiveness of currently available real-world treatments

EGFR, epidermal growth factor receptor; NSCLC, non-small cell lung cancer; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; TKI, tyrosine kinase inhibitor; TTNT, time to next treatment. Minchom A, et al. Poster presented at ASCO 2021; abstract 9052.

Thank You